Perceptions & Social Psychological Predictors of Persistence

This focus cuts across my work in both STEM and non-STEM areas.

Representative publications:

Perez-Felkner, L., Nix, S., & Thomas, K. (in press). Gendered Pathways: How Mathematics Ability Beliefs Shape Course and Degree Choices from High School through College. Frontiers in Psychology.

Do mathematics ability beliefs explain gender gaps in the physical science, engineering, mathematics, and computer science fields (PEMC) and other science fields? We leverage U.S. longitudinal, nationally representative data to estimate gendered differences in girls’ and boys’ perceptions of mathematics ability with the most difficult or challenging material. Our analyses examine the potentially interacting effects of gender and these ability beliefs on students’ pathways to scientific careers. Specifically, we study how beliefs about ability with challenging mathematics influence girls’ and boys’ choices to pursue PEMC degrees, evaluating educational milestones over a six year period: advanced science course completion in secondary school and postsecondary major retention and selection. In doing so, we review our recently published findings and present additional findings further demonstrating gender differences in secondary school mathematics ability beliefs in relation to objective ability measures and the consequences of these beliefs for students’ chosen degree fields.

Nix, S., Perez-Felkner, L. C., & Thomas, K. (2015). Perceived mathematical ability under challenge: A longitudinal perspective on sex segregation among STEM degree fields. Frontiers in Psychology, 6. See Appendix Supplement and related press.

In this manuscript, we investigate how perceived ability under challenge—in particular in mathematics domains—influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women’s 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students’ selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women’s perceptions of their ability, in particular in response to the potentially inhibiting influence of stereotype threat on their pathways to scientific degrees.

Perez-Felkner, L. (2015). Perceptions and Resilience in Underrepresented Students’ Pathways to College. Teachers College Record, 117(8). Full text available here, with TCR reprint rights. See corresponding policy brief published by Center for Postsecondary Success at Florida State University: “Perceptions Matter: How Schools Can Enhance Underrepresented Students’ Success on the Rocky Path to College.”

Even in the age of school reform and expanded access, low-income, underrepresented students continue to work hard in their pursuit of college, risking family stress, health challenges, and burn out. Quality relationships with school teachers and peers seems to promote resilience, based on results of this three year, multiple method original case study. Students who perceive positive regard for their potential to succeed in school from school-based teachers and peers were found to have stronger transition to college outcomes. Given the challenges faced by even high-aspiring underrepresented youth, facilitating the development of these relationships appear to be a critical part of schools’ improvement and reform efforts.

Perez-Felkner, L., McDonald, S.-K., & Schneider, B. L. (2014). What happens to high-achieving females after high school? Gender and persistence on the postsecondary STEM pipeline. In I. Schoon & J. S. Eccles (Eds.), Gender differences in aspirations and attainment: A life course perspective (pp. 285-320). Cambridge: Cambridge University Press.

Although progress has been made in reducing gender inequality in postsecondary education, in the U.S. and in other countries, gender gaps remain in the science, technology, engineering, and mathematics (STEM) fields judged so critical to economic competitiveness. Using the Educational Longitudinal Study of 2002, we examine the secondary school experiences of young women and men and the impact of these experiences on their subsequent courses of study in college. In particular, we use this large-scale study to examine the effect of the psychological indicators (such as deep interest or absorption in the subject matter) suggested to be important predictors of persistence in small-scale studies of women specializing in STEM fields at the postsecondary level. Focusing the analysis on high-achieving youth who have completed the secondary school STEM pipeline course sequences, we find that academic preparation in secondary school is the critically important consideration in keeping American males on the STEM pipeline midway through their undergraduate postsecondary educational experience. African American males who have completed these sequences are the most likely to declare STEM majors and Latino males are least likely, net of nativity status. For high-achieving females on the whole however, coursetaking is insufficient to keep them on the STEM pipeline. Their orientation towards mathematics and external supports from engaged family, school staff, and friends are powerful predictors of their persistence in STEM at the postsecondary level.

Perez-Felkner, L., McDonald, S.-K., Schneider, B., & Grogan, E. (2012). Female and Male Adolescents’ Subjective Orientations to Mathematics and Their Influence on Postsecondary Majors. Developmental Psychology, 48(6), 1658–1673. See also APA link.

Although important strides toward gender parity have been made in several scientific fields, women remain underrepresented in the physical sciences, engineering, mathematics, and computer sciences (PEMCs). This study examines the effects of adolescents’ subjective orientations, course taking, and academic performance on the likelihood of majoring in PEMC in college. Results indicate that racial-ethnic and gender underrepresentation in science, technology, engineering, and mathematics (STEM) fields are interrelated and should be examined with attention to the intersecting factors influencing female and racial-ethnic minority adolescents’ pathways toward careers in these fields. Among those who major in PEMC fields, women closely resemble men with respect to their subjective orientations. The effects of subjective orientations on women’s chances of majoring in PEMC vary by their secondary school mathematics course completion levels. Women who take more mathematics courses are more likely to major in PEMC; however, course taking alone does not attenuate gender disparities in declaring these majors. High mathematics ability (as measured by standardized test scores in the 10th grade) appears to be positively associated with women’s selection of social, behavioral, clinical, and health science majors. This association is less robust (and slightly negative) for women in PEMC. While advanced course taking appears to assist women in selecting PEMC majors, women who enter these fields may not be as strong as those who select other, less male-dominated scientific fields.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s